Search This Blog

2023/02/02

Crude Oil Pre Heat simulation



Problem Statement Cont.


A crude stream at 15°C, 1000 kPa and flowrate of 6x105 kg/hr is

 mixed with a stream of water at 15°C, 1000 kPa and flowrate of

 21600 kg/hr using a Mixer, the outlet from the mixer is then

heated to 65°C through a Heater (Ap=50 kPa),the heater outlet is

 feed to the tube side of a Shell & Tube Heat Exchanger, where it's

 heated using a Shell inlet stream having the same composition as the

 crude feed stream and enters the shell of the heat exchanger at

 180°C, 200 kPa and flowrate of 175m³/hr.





The liquid product from the separator is then heated to 
400°C inside a Heater (Pressure drop-250 kPa) before entering the Atmospheric Column.

Heat Exchanger Specification:
Use Simple weighted model

- The Shell side outlet Temperature is 95°C

Calculate:

-The vapor fraction of the product stream before
entering the atmospheric column.

Min Approach; This is the minimum temperature difference between

 the hot and the cold stream. The vapor molar flow rate from the 
 Pre-Flash.

The pressure drops for the Tube and Shell sides, will be 35 kPa and 5

 kPa, respectively. The tube outlet from the Heat Exchanger is

then sent to a desalter which is simply modeled as Three Phase

 Separator where desalted water, oil and gas is separated.

The oil stream (light liquid) from the desalter is then heated to 175°C

 through a Heater (Pressure drop=375 kPa) and then sent to a Pre

 flash (Separator) to reduce the light components in the feed.

See the part1 &2 simulation


Part 1



Part2






 

No comments:

Post a Comment

NGL Fractionation 2

Feed part2 Feed Characteristics Pressure (kPa) 5000 Temperature 25 (°C) Molar Flow (kgmol/hr) 2988 Feed Composition Nitrogen 1.49E-02 CO2 2....